知识点总结与练习题
核心概念 (Core Concept):形如 \(\sin n\theta = k\)、\(\cos n\theta = k\) 和 \(\tan n\theta = p\) 的方程。
公式 (Formula):变量替换公式 \(X = n\theta\)
定义 (Definition):形如 \(\sin(\theta + \alpha) = k\)、\(\cos(\theta + \alpha) = k\) 和 \(\tan(\theta + \alpha) = p\) 的方程。
应用场景 (Application):物理学中的波动方程、工程学中的信号处理
题目:求解 \(\cos 3\theta = 0.766\),在区间 \(0 \leq \theta \leq 2\pi\) 内。
a) 设 \(X = 3\theta\)
b) 调整区间:\(0 \leq X \leq 6\pi\)
解题步骤说明:
题目:求解 \(\sin(x + 60°) = 0.3\),在区间 \(0 \leq x \leq 360°\) 内。
解题步骤说明:
求解下列方程,在给定区间内:
a) \(\sin 4\theta = 0\),\(0 \leq \theta \leq 360°\)
b) \(\cos 3\theta = -1\),\(0 \leq \theta \leq 360°\)
c) \(\tan 2\theta = 1\),\(0 \leq \theta \leq 360°\)
答题区域:
求解下列方程,在给定区间内:
a) \(\cos 2\theta = \frac{1}{2}\),\(0 \leq \theta \leq 2\pi\)
b) \(\tan \frac{\theta}{2} = -\frac{1}{\sqrt{3}}\),\(0 \leq \theta \leq 2\pi\)
c) \(\sin(-\theta) = \frac{1}{\sqrt{2}}\),\(0 \leq \theta \leq 2\pi\)
答题区域:
求解下列方程,在给定区间内:
a) \(\tan(45° - \theta) = -1\),\(0 \leq \theta \leq 360°\)
b) \(2\sin(\theta - \frac{\pi}{9}) = 1\),\(0 \leq \theta \leq 2\pi\)
c) \(\tan(\theta + 75°) = \sqrt{3}\),\(0 \leq \theta \leq 360°\)
答题区域:
求解下列方程,在给定区间内:
a) \(3\sin 3\theta = 2\cos 3\theta\),\(0 \leq \theta \leq 180°\)
b) \(4\sin(\theta + \frac{\pi}{4}) = 5\cos(\theta + \frac{\pi}{4})\),\(0 \leq \theta \leq \frac{5\pi}{2}\)
c) \(2\sin 2x - 7\cos 2x = 0\),\(0 \leq x \leq 180°\)
答题区域:
a) 设 \(X = 4\theta\),区间调整为 \(0 \leq X \leq 1440°\)
求解 \(\sin X = 0\),得 \(X = 0°, 180°, 360°, 540°, 720°, 900°, 1080°, 1260°, 1440°\)
转换回 \(\theta = \frac{X}{4}\):\(\theta = 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°\)
b) 设 \(X = 3\theta\),区间调整为 \(0 \leq X \leq 1080°\)
求解 \(\cos X = -1\),得 \(X = 180°, 540°, 900°\)
转换回 \(\theta = \frac{X}{3}\):\(\theta = 60°, 180°, 300°\)
c) 设 \(X = 2\theta\),区间调整为 \(0 \leq X \leq 720°\)
求解 \(\tan X = 1\),得 \(X = 45°, 225°, 405°, 585°\)
转换回 \(\theta = \frac{X}{2}\):\(\theta = 22.5°, 112.5°, 202.5°, 292.5°\)
a) 设 \(X = 2\theta\),区间调整为 \(0 \leq X \leq 4\pi\)
求解 \(\cos X = \frac{1}{2}\),得 \(X = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}\)
转换回 \(\theta = \frac{X}{2}\):\(\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}\)
b) 设 \(X = \frac{\theta}{2}\),区间调整为 \(0 \leq X \leq \pi\)
求解 \(\tan X = -\frac{1}{\sqrt{3}}\),得 \(X = \frac{5\pi}{6}\)
转换回 \(\theta = 2X\):\(\theta = \frac{5\pi}{3}\)
c) 利用 \(\sin(-\theta) = -\sin\theta\),得 \(\sin\theta = -\frac{1}{\sqrt{2}}\)
求解得 \(\theta = \frac{5\pi}{4}, \frac{7\pi}{4}\)
a) 设 \(X = 45° - \theta\),区间调整为 \(-315° \leq X \leq 45°\)
求解 \(\tan X = -1\),得 \(X = -45°, 135°\)
转换回 \(\theta = 45° - X\):\(\theta = 90°, -90°\)
在给定区间内:\(\theta = 90°, 270°\)
b) 设 \(X = \theta - \frac{\pi}{9}\),区间调整为 \(-\frac{\pi}{9} \leq X \leq \frac{17\pi}{9}\)
求解 \(\sin X = \frac{1}{2}\),得 \(X = \frac{\pi}{6}, \frac{5\pi}{6}\)
转换回 \(\theta = X + \frac{\pi}{9}\):\(\theta = \frac{7\pi}{18}, \frac{19\pi}{18}\)
c) 设 \(X = \theta + 75°\),区间调整为 \(75° \leq X \leq 435°\)
求解 \(\tan X = \sqrt{3}\),得 \(X = 60°, 240°\)
转换回 \(\theta = X - 75°\):\(\theta = -15°, 165°\)
在给定区间内:\(\theta = 15°, 195°\)
a) 将方程转化为 \(\tan 3\theta = \frac{2}{3}\)
设 \(X = 3\theta\),区间调整为 \(0 \leq X \leq 540°\)
求解 \(\tan X = \frac{2}{3}\),得 \(X = 33.69°, 213.69°, 393.69°\)
转换回 \(\theta = \frac{X}{3}\):\(\theta = 11.2°, 71.2°, 131.2°\)
b) 将方程转化为 \(\tan(\theta + \frac{\pi}{4}) = \frac{5}{4}\)
设 \(X = \theta + \frac{\pi}{4}\),区间调整为 \(\frac{\pi}{4} \leq X \leq \frac{11\pi}{4}\)
求解 \(\tan X = \frac{5}{4}\),得 \(X = 0.896, 4.037\)
转换回 \(\theta = X - \frac{\pi}{4}\):\(\theta = 0.197, 3.34\)
c) 将方程转化为 \(\tan 2x = \frac{7}{2}\)
设 \(X = 2x\),区间调整为 \(0 \leq X \leq 360°\)
求解 \(\tan X = \frac{7}{2}\),得 \(X = 74.05°, 254.05°\)
转换回 \(x = \frac{X}{2}\):\(x = 37.0°, 127.0°\)